
 

Cathode Material Threshold Field  
(V/µm) for 10 mA/cm2 

Mo tips  50-100 
Si tips  50-100 
p-type diamond  160 
Defective CVD diamond  30-120 
Amorphic diamond  20-40 
Cesium-coated diamond  20-30 
Graphite powders  10-20 
Nano-diamond  3-5 (unstable > 30 mA/cm2) 
Carbon Nanotubes  1-2 (stable >4000mA/cm2) 

Table 1.  Threshold fields for various cathode materials and 
some CNT emission characteristics. 
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ABSTRACT 
 
The electron field-emission properties of carbon nanotubes enable the fabrication of cold 
cathodes for a variety of vacuum device applications. The utilization of these cathodes is 
an attractive alternative for the replacement of thermionic or hot cathodes for generating 
X-rays. Miniature X-ray tubes have been fabricated using triode-style carbon nanotube-
based cathodes. In this paper we report the results of characterization studies, such as 
beam current dependence on the control gate voltage. Also, results on focal spot 
measurements and electron-beam modeling allow the possibility of reducing focused spot 
sizes. Driving gate voltages below 1000 volts for easy pulsing has been achieved, and the 
extended lifetime data suggests that a regulated power supply would be ideal for a 
constant AC operation mode. The 1mm focal spot size achieved so far is suitable for most 
XRF applications. 

 
INTRODUCTION 
 
A new X-ray tube design utilizing carbon nanotube (CNTs) cold cathodes may be a 
significant advance in X-ray technology development and could lead to portable and 
miniature X-ray sources for medical and industrial applications.  

 
CNT is a new carbon allotrope that was discovered over ten years ago [1]. Because of the 
unique chemical bonding and the perfect tubular geometry, it has many unique properties 
[2] such as atomically sharp tips and large aspect ratios (>103). As a result, CNTs have 
larger field enhancement factors and, thus, lower threshold fields for emission than 
conventional emitters such as the 
Spindt-type tips fabricated by 
lithography [3]. Due to the field-
emission nature of this cold 
cathode, the energy spread is about 
0.5eV and the spatial spread angle 
in a parallel direction to the 
electrical field is smaller than 5o. It 
has been shown that the field 
emission turn-on field of CNTs is 
significantly lower than the values 
reported for other electron emissive 
materials (Table 1).  
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The CNTs are capable of delivering stable high currents—a stable emission current of 
>1µA has been observed from an individual single-wall carbon nanotube (SWNT) [4]—
and reaching an emission current density greater than 1A/cm2 from a macroscopic 
cathode [5]. These properties make the CNTs attractive electron-field emitters for 
technological applications. The potential of using CNTs as the cold cathodes has been 
demonstrated in devices such as the field-emission flat panel displays (FEDs) [6], 
lighting elements [7], and discharge tubes for over-voltage protection [8].  
 
The novel CNT cold cathode generates room temperature emission and controllable 
output currents and repetition rates [9]. In contrast, conventional thermionic cathodes are 
limited by a slow response time, high power consumption, and high operating 
temperature (up to 1000ºC) that substantially decrease the average lifetime of X-ray 
filaments. The imaging resolution in typical diagnostic X-ray machines is also limited 
because the distribution of electrons is random. In this paper we report results on the 
development of carbon-nanotube-based miniature X-ray tubes.  

 
MINIATURE X-RAY TUBES 
 
The miniaturization of XRF instrumentation 
created a need for a compact, portable, battery-
powered X-ray tube. In 2001 MOXTEK 
introduced a miniature X-ray tube designed to 
address the needs of handheld XRF [10,11]. 
This tube was designed to be a transmission-
target, end-window configuration in order to 
provide very close anode-to-sample coupling. 
Refer to Figure 1 for details of the interior 
construction of the tube. To provide for battery 
operation of the tube the cathode includes a 
thermionic filament that was designed for very low power consumption, requiring 
typically only 0.2 watt input power to produce 100µA of emission current.  There is a 
circular focusing aperture to restrict the electron beam to a central cone. The anode is a 
sputtered film on the back of the beryllium exit window.  
 
This tube was designed as a replacement for 109Cd radioisotope sources commonly used 
in handheld XRF instruments. The 109Cd emits primarily the AgKα line, so silver was 
chosen for the anode material. The tube has an additional advantage over the isotope 
sources, as it produces continuum radiation [11]. 
 
CNT CATHODES 
 
CNTs have found application in scanning probe microscopy and field emission cold 
cathodes for visible light, field-emission displays and X-ray generation [5]. Xintek has 
developed methods to enhance the emission uniformity and stability of the CNT 
cathodes and carried out extensive systematic studies of their field emission properties, 
pioneering several methods for integration of CNTs into device structures [6,7,8]. 

Figure 1. Cross-section of a transmission 
target X-ray tube. 

Copyright ©JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48.                               205  



Figure 2 shows a typical 
current-gate voltage plot. 
This data was taken by 
both increasing and 
decreasing the gate voltage 
(GV). Throughout the 
measurement the anode 
current (AC) to gate 
current (GC) ratio stays 
around 1, which means 
that at this stage of the 
process approximately half 
of the cathode current is 
collected by the gate and 
the other half by the tube 
anode. For example, to 
achieve 20µA of AC or 
GC, a GV of ~ 340V needs 
to be applied. Thus, the power consumption on the CNT cathode is substantially less than 
that of the thermionic cathode. The field emission nature is exhibited when a Fowler-
Nordheim (F-N) is used to fit this data, as illustrated in the insert in Figure 2. 

 
Figure 3 shows pulsed emission current from a typical CNT cathode at a frequency of 
20KHz with different duty cycles. The frequency can be controlled by programming the 
gate voltage through a signal generator. The pulsed current can be further used to produce 
programmable X-ray radiation at various repetition rates and duty cycles after the 
electrons are accelerated to bombard the anode. Some X-ray pulses at different 
frequencies are illustrated in Figure 4. 

 

Figure 2. Typical current-gate voltage plot. The insert shows the 
corresponding F-N fit. 

Figure 3. 20 KHz pulsed cathode operation 
at various duty cycles. 

Figure 4. X-ray pulses with flexible width and 
repetition rate can be readily achieved by 
programming the gate voltage. 
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CNT CATHODE INTEGRATION INTO MINIATURE X-RAY TUBES 
 
The CNT cathode has been integrated into the standard miniature X-ray tube envelope 
utilizing its basic design and dimensions as described in a previous section. The CNT 
films were deposited onto TO-5 headers used for standard filament X-ray tubes. The 
CNT cathode configuration essentially consists of a CNT-film support (a TO-5 header) 

and an electrically insulated 
gate on top of the CNT 
emitter on which a voltage 
(GV) is applied for 
extracting the electrons—the 
cathode current from the 
emitter. Those electrons 
either make it through the 
gate to the tube anode or are 
collected by the cathode 
gate, contributing to the 
anode current (AC) and the 
gate current (GC), 
respectively (Figure 5). 

    Figure 5. CNT cathode configuration 
 

Extended continuous operation. A CNT tube has been continuously operated for over 700 
hours. The GV was adjusted to maintain an AC of 20µΑ, as illustrated in Figure 6. The 
initial and final GVs were 360V and 670V, respectively. The initial GC was around 
20µA for the first 270 hours and, then, it stayed approximately constant during the last 
400 hours of 
operation. It is 
important to note that 
the increase in GV 
was more accentuated 
during the initial time 
than for the last 120 
hours of operation. 
The GV becomes 
more stable thereafter. 
This data suggests 
that the use of a 
regulated AC power 
supply with GV 
below 1000V would 
be ideal for 
maintaining constant 
a given AC, despite 
GV variations during 
the tube lifetime operation. 

Figure 6. Extended CNT operation. The gate voltage has been 
manually adjusted to achieve ~20mA of anode current. 
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Pulsed operation. The CNT tube has also been continuously operated in a pulsed mode. 
Figure 7 shows data taken at 1KHz with a 25% duty cycle, a GC of 33µA, and a GV of 
600V. 
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Figure 7. Pulsed operation of a CNT X-ray tube. 
 

 
Focal spot characterization. Figure 8 shows the focal spot for a CNT X-ray tube with a 
passive-focusing optic and a large-opening cathode gate. Figure 9 portrays the result 
using passive optics with an adjusted focal length and a small-opening cathode gate. The 
images on the right-hand side of each pair are computational results, closely resembling 
the experimental results on the left. Validation of experimental results through modeling 
of this kind enables optical design to progress toward the goal of minimizing spot size for 
CNT-based X-ray devices [13]. Nevertheless, focal spot sizes achieved so far (~1mm) are 
suitable for most XRF applications. 

 
 

 

 

Figure 8. Experimental and computational 
spot images of a CNT X-ray tube with a 
large gate opening. 

1 mm 1 mm 
Figure 9. Experimental and computational 
spot images of a CNT X-ray tube with a 
small gate opening. 
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SUMMARY AND CONCLUSIONS 
 
CNT cathodes have been successfully incorporated into miniature X-ray tubes. The CNTs 
offer unique advantages for a new generation of X-ray tubes, namely: low power 
consumption, long lifetime (testing still in progress), and pulse capability. Driving gate 
voltages below 1000 volts for easy pulsing has been achieved, and the extended lifetest 
data suggests that a regulated power supply would be ideal for a constant AC operation 
mode. The 1mm focal spot size achieved so far is suitable for most XRF applications. 
The use of electron-beam modeling tools allows the possibility of reducing focused spot 
sizes. 
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