An improved wire grid polarizer for thermal infrared applications

M. George*, J. Bergquist, B. Wang, R. Petrova, H. Li, E. Gardner
Moxtek, Inc. Orem, UT
*mgeorge@moxtek.com

Motivation

- The wire grid polarizer (WGP) is one of the most useful optical components in the field. Potential markets exist in Optical Isolation, Imaging, and Spectroscopic applications in Defense, Security, Forensics, Astronomy, Communications, and Industrial Lasers.
- The WGP consists of an array of metallic lines with sub-wavelength pitch (period) supported by a transparent substrate. It exhibits form birefringence and diattenuation (dichroism), and an anisotropic reflectivity.
- Wire grid structures can be particularly effective as infrared polarizers due to:
 o broad bandwidth, large acceptance angle, compact size
 o Existing WGP products designed for mid-wavelength (MWIR) and long-wavelength (LWIR) infrared applications are inadequate due to:
 o relatively large wire grid pitch (typically ~ 370 nm)
 o low contrast (~ 350) between transmission in passing and blocking configurations
- Moxtek has demonstrated a substantial increase in WGP contrast at visible and ultraviolet wavelengths by reducing the pitch.
- A dramatic reduction in pitch from that found in typical IR WGP products should greatly improve MWIR and LWIR contrast.
- Moxtek has therefore developed high contrast IR polarizers on AR-coated silicon suitable for MWIR and LWIR applications using our aluminum nanowire, large area patterning capabilities.

Approach

Aluminum Nanowire® Polarizer Technology

Key Results

Performance in Transmission (normal incidence)

Performance in Reflection (12° & 45° angle of incidence)

Optical Modeling vs. Measured Transmission

Moxtek has developed high contrast IR wire grid polarizers on AR-coated silicon suitable for MWIR and LWIR applications.

- MWIR polarizer shows:
 o high contrast (>35 dB) between blocking and passing states.
 o greater than 95% passing state transmission between 3.3 - 5.7 μm.
- LWIR polarizer shows:
 o high contrast (>40 dB) between blocking and passing states.
 o greater than 70% passing state transmission between 7.0 - 15.0 μm.
 o FTIR transmission measurements show qualitative agreement with optical modeling results from a commercial RCWA software package.
 o Preliminary laser damage threshold tests reveal LWIR WGP withstands 110 kW/cm² of 10.6 μm cw laser radiation in the blocking state and 10 kW/cm² in passing state.

Summary

Acknowledgments

Visit Moxtek at booth 2539