Visible Metalens Plates

MET Series Datasheet

Visible Metalens Plates

Applications

- Imaging Systems
- Aberration Control
- Machine Vision
- Hyper- and Multi-spectral Cameras
- Medical/Dental Imaging
- LIDAR and Optical Sensing
- Augmented Reality (AR/VR)
- Emission Control for Micro-Displays
- Illumination and LED Lighting
- Laser Beam Shaping
- Optical Communications (telecom)
- Off-axis Beam Applications

Standard Product Options

Moxtek Part#	Design λ [nm]	Diam. [mm]	Focal length* [mm]	NA
MET00051	532	4	10	0.196
MET00043	532	4	2	0.707
MET00063	632	4	10	0.196
MET00055	632	4	2	0.707
MET00027	532	1	2.5	0.196
(Multiple	532	1	0.5	0.707
parts	632	1	2.5	0.196
on chip)	632	1	0.5	0.707

All parts above have protective OvercoatTM and absorptive aperture applied to metasurface.

*Focal length at design wavelength.

Other design λ 's are also included, but performance is not yet characterized for all lenses.

Moxtek[®] offers off-the-shelf metalens solutions for a wide range of optical applications. These flat-optic metalenses provide a compact and efficient alternative to traditional bulky, curved lenses. Utilizing Moxtek's proprietary nanostructured "meta-atom" patterns, these metalenses are specifically engineered to modify the phase profile of incident light, enabling precise and efficient light redirection. Unlike conventional lenses that bend light through thick glass curvature, metalenses manipulate local phase shifts using advanced subwavelength nanostructures. This cutting-edge optical technology enables the development of innovative and next-generation devices.

Features	Benefits			
	High aspect ratio wafer-scale manufacturing			
Moxtek [®] Nanofabrication	High-volume production and advanced metrology			
Technology	Design, mastering and prototyping options			
	Overcoat TM , aperture and filter integration options			
	Reduced cost vs. DUV immersion lithography			
Nano-Imprint Lithography (NIL)	Accurate, precise, repeatable processing			
	Meta-atom resolution limited only by Master			
Inorganic	High heat resistance and high fluence tolerance			

* See OPT-DATA-1010 for fabrication details.

Metalens Optical Micrograph & SEM Image Reflective & Absorptive Aperture Examples

General Specifications

Substrate Type: Angular Field of View: 20° ± AR Coating: Maximum Temperature: *Sample Dimensions:* 20.0 ±0.2 mm (square)

Eagle XG Display Glass, 0.7±0.07 mm thick Index of Refraction: 1.5198 (435.8 nm), 1.5078 (643.8 nm) *Thermal Expansion:* 31.7 x 10⁻⁷/°C (0-300°C) Visible (broadband 420-670 nm), backside Under investigation (≥200°C, 1000 hrs)

Do not touch or clean the metalens surface, even with Moxtek protective OvercoatTM. Dust with compressed N² or clean dry air. \pm Minimal performance degradation in relative illumination & distortion for 1mm diameter, 2.5 mm focal length, 532 nm λ lens with narrow-band source. Some MTF degradation occurs, especially at high spatial frequency. See Tech Note: OPT-Tech-1018 for more information. Contact Moxtek for custom options

Preliminary Performance Specifications at Normal Incidence												
Moxtek Part #	Lens #	Diam. [mm]	Focal length* [mm]	NA	AFE†	MTF (50 lp/mm)	Zero Order	Measurement Wavelength	Metrology Filter Bandwidth			
MET00051		4	10	0.196	80.0%	0.70	12.5%	532 nm	1 nm			
MET00043		4	2	0.707	50.0%	0.35	12.5%	532 nm	1 nm			
MET00063		4	10	0.196	76.0%	0.65	8.0%	633 nm	3 nm			
MET00055		4	2	0.707	53.0%	0.325	7.5%	633 nm	3 nm			
MET00027 (Multiple parts on chip)	2b	1	2.5	0.196	70.0%	0.85	12.5%	532 nm	1 nm			
	2a	1	0.5	0.707	47.5%	0.38	12.5%	532 nm	1 nm			
	3b	1	2.5	0.196	60.0%	0.85	10.0%	633 nm	3 nm			
	3a	1	0.5	0.707	46.0%	0.37	8.0%	633 nm	3 nm			

*Focal length at design wavelength. †AFE is characterized using internal method. Some lenses are still under evaluation.

See Tech Note: OPT-Tech-1018 or contact Moxtek for more information. Performance varies with source bandwidth, wavelength, and angle of incidence.

Metalens acting as a macro lens attachment to an iPhone11 Pro telephoto camera system, with imaging results of a pumpkin stem and euro bill.

Example Optical Performance

Moxtek, Inc. 452 West 1260 North Orem, UT 84057

P 801.225.0930 moxtek.com Performance data was taken from sample evaluations. Some part-to-part variation is expected. For warranty and ordering information, please visit moxtek.com.